Electromigration in solid-state integrated structures with through holes
https://doi.org/10.1234/2221-7789-2025-3-26-30
EDN: NCUQOV
Abstract
The paper studies the resistance to electromigration of structures with through holes not filled with tungsten and the effect of filling the holes with tungsten on the electromigration process. It is shown that with a decrease in the hole diameter in structures with holes not filled with tungsten, the mean failure time decreases due to poor aluminum coating and an increase in the ratio of the hole width to its length, and in the case of filling the holes with tungsten, the mean failure time does not depend on the diameter. It is shown that during electromigration, the resistance of the through hole changes due to the effect of high-density current, which causes silicon migration along aluminum with its subsequent deposition along the tungsten-aluminum interface.
About the Authors
Natalia V. CherkesovaRussian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of the Department of Electronics and Digital Information Technologies of the Institute of Electronics, Robotics and Artificial Intelligence.
Hasan A. Mustafaev
Russian Federation
Doctor of Technical Sciences, Professor of the Department of Electronics and Digital Information Technologies of the Institute of Electronics, Robotics and Artificial Intelligence.
Arslan H. Mustafayev
Russian Federation
Doctor of Technical Sciences, Professor.
Denis M. Zdravomyslov
Russian Federation
2nd year postgraduate student of the Department of Electronic Component Base of Micro-, Nano-Electronics and Quantum Devices
References
1. Смолин В.К. Особенности применения алюминиевой металлизации в интегральных схемах // Микроэлектроника. 2004. Т. 33, № 1. С. 10–16.
2. Pietranico S., Lefebvre S., Pommier S., Berkani Bouaroudj M., Bontemps S. A study of the effect of degradation of the aluminium metallization layer in the case of power semiconductor devices // Microelectronics Reliability. 2011. V. 51, N 9-11. P. 1824–1829.
3. Mustafaev G.A., Khasanov A.I., Cherkesova N.V., Mustafaev A.G. Technology for the formation of refractory metals for micro- and nanoelectronics products // IOP Conference Series: Materials Science and Engineering. 2020. V. 905. P. 12048.
4. Мустафаев Г.А., Черкесова Н.В. Силициды тугоплавких металлов для изделий микро- и наноэлектроники: учебное пособие. Нальчик: Каб.-Балк. ун-т, 2021. 95 с.
5. Мустафаев Г.А., Черкесова Н.В., Мустафаев А.Г. Отказы в межсоединениях интегральных схем, вызванные электромиграцией // Электроника и электротехника. 2017. № 4. С. 1–5.
6. Мустафаев Г.А., Черкесова Н.В., Панченко В.А., Мустафаев А.Г. Надежность интегральных микросхем с алюминиевой металлизацией // Электроника и электротехника. 2017. № 3. С. 1–6.
7. Черкесова Н.В., Мустафаев Г.А., Мустафаев А.Г. Технология формирования контактов из тугоплавких металлов к легированным полупроводниковым слоям // Нано- и микросистемная техника. 2024. Т. 26, № 4. С. 184–187.
8. Wilson T., Korolev K., Crow N. Bilayer lift-off process for aluminum metallization // Journal of Micro/Nanolithography. 2015. V. 14. N 1. Р. 014501-1.
9. Мустафаев Г.А., Мустафаев А.Г., Черкесова Н.В., Хасанов А.И. Применение силицида вольфрама как токопроводящего материала для металлизации // Известия Чеченского госуниверситета. 2017. № 4. С. 36–40.
10. Патент РФ № 2757177. Способ изготовления силицидных контактов из вольфрама / Г.А. Мустафаев, А.Г. Мустафаев, Н.В. Черкесова, А.Г. Мустафаев, А.И. Хасанов. Опубликовано: 11.10.2021 г. Бюлл. № 29.
11.
Review
For citations:
Cherkesova N.V., Mustafaev H.A., Mustafayev A.H., Zdravomyslov D.M. Electromigration in solid-state integrated structures with through holes. Proceedings of the Kabardino-Balkarian State University. 2025;15(3):26-30. (In Russ.) https://doi.org/10.1234/2221-7789-2025-3-26-30. EDN: NCUQOV


