Preview

Proceedings of the Kabardino-Balkarian State University

Advanced search

An interfacial characteristics of biocomposites «Epoxy polymer/plant fibre»: a fractal model

https://doi.org/10.1234/2221-7789-2025-1-5-9

EDN: EXFBYI

Abstract

The interfacial effects in biocomposites (composites reinforced with plant fibres) were studied within the framework of fractal analysis. It has been shown that used methods of fractal analysis allow enough precise quantitative description of the most important characteristics of interfacial interaction polymer matrix- plant fiber, namely, shear strength of interfacial contact and depth of penetration (infiltration) of matrix poly- mer in superficial layer of reinforcing fiber. The fulfilled analysis corresponds fully to results for other types of reinforcing fibers, i.e. plant fibers cannot make in a separate class of reinforcing elements. Diameter of initial fiber serves as basic characteristic for analysis fulfillment.

 

About the Authors

Igor V. Dolbin
Kabardino-Balkarian State University
Russian Federation

Senior Researcher, Center for Progressive Materials and Additive Technologies



Elena G. Kudrova
Russian State University of Tourism and Service
Russian Federation

Senior Lecturer



Sergey G. Solodovnik
Russian State University of Tourism and Service
Russian Federation

Senior Lecturer



Andrey V. Astapenko
Russian State University of Tourism and Service
Russian Federation

Candidate of Technical Sciences



Gennady V. Kozlov
Russian State University of Tourism and Service
Russian Federation

Doctor of physico-mathematical sciences, professor, physicist.



References

1. Le Duigou A., Groens Y., Bailey S., Krichkadek R., Davis P., Sohier L. Multiscale study of the interface between natural fibers and biopolymer // Composite. Part A. 2014. V. 65. P. 161-168.

2. Le Duigou A., Davis P., Bailey S. Analysis of the environmental impact of the production of linen fibers used as reinforcement for composite materials // Journal of Bio-based Materials and Bio-energy. 2011. V. 5. P. 153-165.

3. Le Duigou A., Kervolon A., Le Grand A., Nardin M., Bailey S. Interfacial properties of systems of flax fiber - epoxy resin: the presence of complex interfacial bond // Science and Technology of Composites. 2014. V. 100.

4. P. 152-157.

5. Dolbin I.V., Magomedov G.M., Kozlov G.V. Influence of the Polymer Matrix Stiffness on the Effectiveness of Carbon Nanotube Reinforcement of Nanocomposites // Izvestiya Vuzov. Fizika. 2022. Vol. 65, No. 12 (781). Pp. 128–131.

6. Kozlov G.V., Dolbin I.V., Karnet Yu.N., Vlasov A.N. Comparative analysis of the effectiveness of reinforcement of polymer nanocomposites with 2D nanofillers on the example of polyimide/Na+-montmorillonite and polyvinyl alcohol/graphene oxide // Mechanics of Composite Materials and Structures. 2022. Vol. 28, No. 2. Pp. 247–254.

7. Atlukhanova L.B., Dolbin I.V., Kozlov G.V., Kumysheva Yu.A. The Nature of the Reinforcing Element in Polymer/Carbon Nanotube Nanocomposites // Izvestiya of the Kabardino-Balkarian State University. 2021. Vol. 11, No. 2. Pp. 34–39.

8. Le Duigou A., Davies P., Baley C. Exploring durability of interfaces in flax fibre/epoxy micro- composites // Composite. Part A. 2013. V. 48. P. 121–128.

9. Dovgyalo V.A., Zhandarov S.F., Pisanova E.V. Determination of Adhesive Strength in the Thermoplastic-Thin Fiber System // Mechanics of Composite Materials. 1990. V. 26, No. 1. P. 9–12.

10. Cooper C.A., Cohen S.R., Barber A.H., Wagner H.D. Detachment of nanotubes from a polymer matrix // Applied Physics Letters. 2002. V. 81, N 20. P. 3873–3875.

11. Barber A.H., Cohen S.R., Kenig S., Wagner H.D. Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix // Composites Sci. Techn. 2004. V. 64, N 15. P. 2283–2289.

12. Lau K.-T. Interfacial bonding characteristics of nanotube/polymer composites // Chem. Phys. Lett. 2003. V. 370, N 3-4. P. 399.

13. Yakhyaeva Kh.Sh., Magomedov G.M., Kozlov G.V. Structure and Adhesive Phenomena in Polymer Systems. M.: Pero, 2016. 254 p.

14. Summ B.D. and Ivanova N.I. Objects and Methods of Colloid Chemistry in Nanochemistry // Advances in Chemistry. 2000. Vol. 69, No. 11. Pp. 995–1008.

15. Kozlov G.V., Yanovsky Yu.G., Zaikov G.E. Synergetics and fractal analysis of polymer composites filled with short fibers. New York: Nova Science Publishers, Inc., 2011. 223 p.

16. Van Damme H., Levitz P., Bergaya F., Alcover J.F., Gatineau L., Fripiat J.J. Monolayer adsorption of fractal surfaces: a simple two-dimensional simulation // J. Chem. Phys. 1986. V. 85, N 1. P. 616–625.

17. Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polymer Nanocomposites: Diversity of Structural Forms and Applications. Moscow: Nauka, 2009. 278 p.

18. Buchachenko A.L. Nanochemistry: A Direct Path to High Technologies of the New Century // Advances in Chemistry. 2003. Vol. 72, No. 5. Pp. 419–437.


Review

For citations:


Dolbin I.V., Kudrova E.G., Solodovnik S.G., Astapenko A.V., Kozlov G.V. An interfacial characteristics of biocomposites «Epoxy polymer/plant fibre»: a fractal model. Proceedings of the Kabardino-Balkarian State University. 2025;15(1):5-9. (In Russ.) https://doi.org/10.1234/2221-7789-2025-1-5-9. EDN: EXFBYI

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2221-7789 (Print)
ISSN 0000-0000 (Online)